SPECTROPHOTOMETRIC DETERMINATION OF METHYLAPOGALANTHAMINE HYDROCHLORIDE

A. D. Volodina, E. K. Dobronravova, and T. T. Shakirov Khimiya Prirodnykh Soedinenii, Vol. 6, No. 2, pp. 277-278, 1970 UDC 615.717+543.422

The substance methylapogalanthamine hydrochloride, obtained from galanthamine [1], is used in medicine as a new hypotensive agent.

In the present paper we propose a spectrophotometric method for determining this preparation which differs from nonaqueous and mercurimetric titrations (MRTU [Inter Republican Technical Standard] 42 no. 3516-67 and 42 no. 3519-67) by its rapidity, specificity, and minimum consumption of materials.

In the UV spectrum of methylapogalanthamine hydrochloride there is an absorption maximum at 293 m μ (log ϵ 3.49) [2]) which is suitable for spectrophotometric determinations. In the range of working concentrations the absorption of solutions of the substance obey the Bouguer-Lamber-Beer law.

Determination of the preparation in a powder. About 5-8 mg (accurately weighed) of the substance was dissolved in water in a 100-ml measuring flask. The optical density was measured at 293 m μ (against water) in an SF-4 spectrophotometer in a cell 1 cm thick; the optical density of a standard solution was measured under the same conditions [5 mg (accurately weighed) of the standard in 100 ml of water]. A pharmacopeal preparation recrystallized from ethanol (1:2), mp 164-165° C, was used as the standard. The content of the preparation X (%) calculated on the absolutely dry weight was calculated from the formula

$$X = \frac{a_{\rm st} \cdot D_x \cdot 100 \cdot 100}{D_{\rm st} \cdot (100 - h) P},$$

where a is the weight of the standard, mg;

 D_{st} and D_{x} are the optical densities of the standard solution and the solution under investigation; h is the moisture content, %; and

P is the weight of the preparation, mg.

The results of the analysis of the substance in a powder are given in the table (the symbols are the generally-adopted ones [3]).

Results of the Analysis of Methylapogalanthamine Hydrochloride

Amount taken, mg	Found, %	$(X-\overline{X})$	(X—X),	Statistical factors
3.640 2.520 2.990 7.610 7.040 4.520 6.280 6.960 6.610	98.84 100.40 99.34 98.83 100.42 101.76 101.75 100.86 100.61 Sum 902.81 X=100.31	$\begin{array}{c} -1.47 \\ +0.09 \\ -0.97 \\ -1.48 \\ +0.11 \\ +1.45 \\ +1.44 \\ +0.55 \\ +0.30 \end{array}$	2.161 0.008 0.941 2.190 0.012 2.103 2.074 0.303 0.090 Sum 9.882	$S^{\bullet}=1.235$ S=1.111 $S_{\overline{s}}=0.370$ a=0.950 $t_{ac}=2.306$ $E_{a}=0.853$ $E_{rel}=0.850\%$

Determination of the preparation in a 0.2% ampule solution. The contents of several ampules were mixed, 1 ml was transferred to a 50-ml measuring flask, and water was added to the mark. The optical density of the solutions was measured as described above. The content of the substance X (g) in 1 ml of solution was calculated from the following formula:

$$X = \frac{c_{\rm st} \cdot D_x \cdot V}{D_{\rm st} \cdot 1000} \; , \label{eq:X}$$

here \mathbf{c}_{st} is the concentration of the standard solution, $\mathrm{mg/ml};$ and V is the dilution, $\mathrm{ml}.$

REFERENCES

- 1. A. Abdusamatov, Kh. A. Abduazimov, S. Yu. Yunusov, KhPS [Chemistry of Natural Compounds], 5, 194, 1969.
 - 2. L. Bubewa-Iwanowa, Ber., no. 6, 1348, 1962.
 - 3. N. P. Komar, Zh. analit. khim., no. 7, 325, 1952.

22 October 1969

Institute of the Chemistry of Plant Substances AS UzSSR